AUTOMOTIVE MOSFET

IRF1405ZPbF IRF1405ZSPbF IRF1405ZLPbF

HEXFET® Power MOSFET

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Timax
- Lead-Free

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	150		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	110	Α	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	75		
I _{DM}	Pulsed Drain Current ①	600		
P _D @T _C = 25°C	Power Dissipation	230	W	
	Linear Derating Factor	1.5	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy②	270	mJ	
E _{AS} (Tested)	Single Pulse Avalanche Energy Tested Value ©	420		
I _{AR}	Avalanche Current ①	See Fig.12a, 12b, 15, 16	Α	
E _{AR}	Repetitive Avalanche Energy ©		mJ	
T _J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.65	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	1
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount, steady state)♡		40	

 $\mathsf{HEXFET}^{\circledR}$ is a registered trademark of International Rectifier.

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	55	_		٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.049		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.7	4.9	mΩ	V _{GS} = 10V, I _D = 75A ③
$V_{GS(th)}$	Gate Threshold Voltage	2.0	_	4.0	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Transconductance	88			S	$V_{DS} = 25V, I_{D} = 75A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 55V, V_{GS} = 0V$
				250		$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-200		$V_{GS} = -20V$
Q_g	Total Gate Charge		120	180		I _D = 75A
Q_{gs}	Gate-to-Source Charge		31		nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		46			V _{GS} = 10V ③
t _{d(on)}	Turn-On Delay Time		18			$V_{DD} = 25V$
t _r	Rise Time		110			$I_D = 75A$
$t_{d(off)}$	Turn-Off Delay Time		48		ns	$R_G = 4.4\Omega$
t _f	Fall Time		82			V _{GS} = 10V ③
L _D	Internal Drain Inductance		4.5			Between lead,
					nΗ	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact
C _{iss}	Input Capacitance		4780			$V_{GS} = 0V$
C _{oss}	Output Capacitance		770	_		$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		410	_	pF	f = 1.0MHz
C _{oss}	Output Capacitance		2730	_		$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		600	_		$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		910			$V_{GS} = 0V$, $V_{DS} = 0V$ to 44V \oplus

Source-Drain Batings and Characteristics

	Parameter	Min.	Typ.	Max	Units	Conditions
	1 didilictor	IVIIII.	ιyp.	Wax.		
I _S	Continuous Source Current			75		MOSFET symbol
	(Body Diode)				Α	showing the
I_{SM}	Pulsed Source Current			600		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 75A, V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		30	46	ns	$T_J = 25$ °C, $I_F = 75A$, $V_{DD} = 25V$
Q _{rr}	Reverse Recovery Charge		30	45	nC	di/dt = 100A/μs ③
t _{on}	Forward Turn-On Time	Intrinsio	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L = 0.10mH $R_G = 25\Omega$, $I_{AS} = 75A$, $V_{GS} = 10V$. Part not recommended for use above this value.
- $\ \, \oplus \, \, C_{oss}$ eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- S Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- ⑤ This value determined from sample failure population. 100% tested to this value in production.
- This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

IRF1405Z/S/LPbF

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

TO-262 Part Marking Information

